This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or...
5.302 is a 3-unit course intended to provide freshmen with a stimulating and enjoyable "hands-on" experience with chemical phenomena. The aim of this course is to provide freshmen with an opportunity to get "up close and personal" with the chemical phenomena introduced in 5.111, 5.112 and 3.091...
Laboratory Chemistry (5.310) introduces experimental chemistry for students requiring a chemistry laboratory who are not majoring in chemistry. Students must have completed general chemistry (5.111) and have completed or be concurrently enrolled in the first semester of organic chemistry (5.12)...
5.311 is the first of a three-term laboratory subject sequence for chemistry majors. Experimental work emphasizes development of fundamental laboratory skills and techniques: volumetric and colorimetric analysis; nuclear magnetic resonance; preparation, purification, and characterization of chemical...
5.32 involves more advanced experimental work than 5.310 or 5.311. The course emphasizes organic synthesis assisted by chiral catalysis, purification, and analysis of organic compounds employing such methods as IR, 1D and 2D NMR, UV spectroscopies and mass spectrometry, and thin layer and non-chiral...
5.33 focuses on advanced experimentation, with particular emphasis on chemical synthesis and the fundamentals of quantum chemistry, illustrated through molecular spectroscopy. The written and oral presentation of experimental results is also emphasized in the course.
Acknowledgements
The materials...
This course is the first part of a modular sequence of increasingly sophisticated (and challenging) laboratory courses required of all Chemistry majors: 5.35 Introduction to Experimental Chemistry, 5.36 Biochemistry and Organic Laboratory, 5.37 Organic and Inorganic Laboratory, and 5.38 ...
The course, which spans two thirds of a semester, provides students with a research-inspired laboratory experience that introduces standard biochemical techniques in the context of investigating a current and exciting research topic, acquired resistance to the cancer drug Gleevec. Techniques include...
This course, which spans a third of a semester, provides students with experience using techniques employed in synthetic organic chemistry. It also introduces them to the exciting research area of catalytic chiral catalysis.
This class is part of the new laboratory curriculum in the MIT Department...
This course deals with the application of structure and theory to the study of organic reaction mechanisms: Stereochemical features including conformation and stereoelectronic effects; reaction dynamics, isotope effects and molecular orbital theory applied to pericyclic and photochemical reactions; and...
This course examines important transformations of organotransition-metal species with an emphasis on basic mechanisms, structure-reactivity relationships, and applications in organic synthesis.
5.451 is a half-semester introduction to natural product biosynthetic pathways. The course covers the assembly of complex polyketide, peptide, terpene and alkaloid structures. Discussion topics include chemical and biochemical strategies used to elucidate natural product pathways.
This course covers modern and advanced methods of elucidation of the structures of organic molecules, including NMR, MS, and IR (among others). The fundamental physical and chemical principles of each method will be discussed. The major emphasis of this course is on structure determination by way of...
This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds.
Taught by one of the world’s leading experts in the field, this course will educate students about the fundamentals of international criminal law and policy. We will explore the challenges of prosecuting international genocide, war crimes, terrorism, and piracy cases. From the Nuremberg trial to the...
This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the...
This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.
Acknowledgements
The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks...
This course deals with the experimental and theoretical aspects of chemical reaction kinetics, including transition-state theories, molecular beam scattering, classical techniques, quantum and statistical mechanical estimation of rate constants, pressure-dependence and chemical activation, modeling complex...
This course discusses the principles and methods of statistical mechanics. Topics covered include classical and quantum statistics, grand ensembles, fluctuations, molecular distribution functions, other concepts in equilibrium statistical mechanics, and topics in thermodynamics and statistical mechanics...
5.73 covers fundamental concepts of quantum mechanics: wave properties, uncertainty principles, Schrodinger equation, and operator and matrix methods. Basic applications of the following are discussed: one-dimensional potentials (harmonic oscillator), three-dimensional centrosymetric potentials (hydrogen...