Autonomous Navigation for Flying Robots

TUMx

You will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory.

In recent years, flying robots such as miniature helicopters or quadrotors have received a large gain in popularity. Potential applications range from aerial filming over remote visual inspection of industrial sites to automatic 3D reconstruction of buildings. Navigating a quadrotor manually requires a skilled pilot and constant concentration. Therefore, there is a strong scientific interest to develop solutions that enable quadrotors to fly autonomously and without constant human supervision. This is a challenging research problem because the payload of a quadrotor is uttermost constrained and so both the quality of the onboard sensors and the available computing power is strongly limited. 

In this course, we will introduce the basic concepts for autonomous navigation for quadrotors. The following topics will be covered:

  • 3D geometry,
  • probabilistic state estimation,
  • visual odometry, SLAM, 3D mapping,
  • linear control.

In particular, you will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory.

The course consists of a series of weekly lecture videos that we be interleaved by interactive quizzes and hands-on programming tasks. For the flight experiments, we provide a browser-based quadrotor simulator which requires the students to write small code snippets in Python.

This course is intended for undergraduate and graduate students in computer science, electrical engineering or mechanical engineering. This course has been offered by TUM for the first time in summer term 2014 on EdX with more than 20.000 registered students of which 1400 passed examination. The MOOC is based on the previous TUM lecture “Visual Navigation for Flying Robots” which received the TUM TeachInf best lecture award in 2012 and 2013.

FAQ

Do I need to buy a textbook?

No, all required materials will be provided within the courseware. However, if you are interested, we recommend the following additional materials:

  1. This course is based on the TUM lecture Visual Navigation for Flying Robots. The course website contains lecture videos (from last year), additional exercises and the full syllabus: http://vision.in.tum.de/teaching/ss2013/visnav2013
  2. Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard and Dieter Fox. MIT Press, 2005.
  3. Computer Vision: Algorithms and Applications. Richard Szeliski. Springer, 2010.

Do I need to build/own a quadrotor?

No, we provide a web-based quadrotor simulator that will allow you to test your solutions in simulation. However, we took special care that the code you will be writing will be compatible with a real Parrot Ardrone quadrotor. So if you happen to have a Parrot Ardrone quadrotor, we encourage you to try out your solutions for real.

What will you learn

After successful participation of this module, students will be able to

  • Understand the flight principles of quadrotors and their application potential
  • Specify the pose of objects in 3D space and to perform calculations between them (e.g., compute the relative motion)
  • Explain the principles of Bayesian state estimation
  • Implement and apply an extended Kalman filter (EKF), and to select appropriate parameters for it
  • Implement and apply a PID controller for state control, and to fine tune its parameters
  • Understand and explain the principles of visual motion estimation and 3D mapping

Dates:
  • 5 May 2015, 8 weeks
Course properties:
  • Free:
  • Paid:
  • Certificate:
  • MOOC:
  • Video:
  • Audio:
  • Email-course:
  • Language: English Gb

Reviews

No reviews yet. Want to be the first?

Register to leave a review

Show?id=n3eliycplgk&bids=695438
Included in selections:
NVIDIA
More on this topic:
Eth_mobroboto_262x136 AMRx: Autonomous Mobile Robots
Introduction to Autonomous Mobile Robots – basic concepts and algorithms for...
Autonav-verified-262x136 AUTONAVx: Autonomous Navigation for Flying Robots
In this course, we will introduce the basic concepts for autonomous navigation...
More from 'Computer Science':
Maxresdefault CS 282: Principles of Operating Systems II: Systems Programming for Android
Developing high quality distributed systems software is hard; developing high...
Banner_ruby Ruby on Rails Tutorial: Learn From Scratch
This post is part of our “Getting Started” series of free text tutorials on...
Logo-30-128x128 NYU Course on Deep Learning (Spring 2014)
Lectures from the NYU Course on Deep Learning (Spring 2014) This is a graduate...
Cppgm C++ Grandmaster Certification
The C++ Grandmaster Certification is an online course in which participants...
Umnchem Computational Chemistry (CHEM 4021/8021)
Modern theoretical methods used in study of molecular structure, bonding, and...
More from 'edX':
6e8a49e3-e74b-4a74-81b7-ebaf9c82c620-e20771d7a2a2.small Derivatives Markets: Advanced Modeling and Strategies
Financial derivatives are ubiquitous in global capital markets. Students will...
H20_new_262x136 CTB3365x: Introduction to Water Treatment
Learn about urban water services, focusing on basic drinking water and wastewater...
Solar-energy_262x136 ET3034TUx: Solar Energy
Discover the power of solar energy and design a complete photovoltaic system...
Edx_262x136 edXDEMO101: edX Demo
A fun and interactive course designed to help you explore the edX learning experience...
Bio-465x_262x136 BIO465X: Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described...

© 2013-2019