Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different...
This course introduces sensory systems and multi-sensory fusion using the vestibular and spatial orientation systems as a model. Topics range from end organ dynamics to neural responses, to sensory integration, to behavior, and adaptation, with particular application to balance, posture and locomotion...
The sensing, thinking, moving body is the basis of our experience in the world; it is the very foundation on which cognitive intelligence is built. Physical Intelligence, then, is the inherent ability of the human organism to function in extraordinary accord with its physical environment. This class...
This course introduces students to a quantitative approach to studying the problems of physiological adaptation in altered environments, especially microgravity and partial gravity environments. The course curriculum starts with an Introduction and Selected Topics, which provides background information...
This course covers the principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions...
This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design...
This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with...
22.56J aims to give graduate students and advanced undergraduates background in the theory and application of noninvasive imaging methods to biology and medicine, with emphasis on neuroimaging. The course focuses on the modalities most frequently used in scientific research (X-ray CT, PET/SPECT, MRI...
This course provides an overview of the distinctive features which distinguish sound categories of languages of the world. Theories which relate these categories to their acoustic and articulatory correlates, both universally and in particular languages, are covered. Models of word recognition by listeners...
In this subject, we consider two basic topics in cellular biophysics, posed here as questions:
Which molecules are transported across cellular membranes, and what are the mechanisms of transport? How do cells maintain their compositions, volume, and membrane potential?
How are potentials generated...
6.541J surveys the structural properties of natural languages, with special emphasis on the sound pattern. Topics covered include: representation of the lexicon; physiology of speech production; articulatory phonetics; acoustical theory of speech production; acoustical and articulatory descriptions of...
The course focuses on experimental investigations of speech processes. Topics include: measurement of articulatory movements, measurements of pressures and airflows in speech production, computer-aided waveform analysis and spectral analysis of speech, synthesis of speech, perception and discrimination...
The Acoustics of Speech and Hearing is an H-Level graduate course that reviews the physical processes involved in the production, propagation and reception of human speech. Particular attention is paid to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable...
Why has it been easier to develop a vaccine to eliminate polio than to control influenza or AIDS? Has there been natural selection for a 'language gene'? Why are there no animals with wheels? When does 'maximizing fitness' lead to evolutionary extinction? How are sex and parasites related? Why don't...
The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the...
This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation...
This seminar applies a systems perspective to understand health care delivery today, its stakeholders and problems as well as opportunities. Students are introduced to the 'systems perspective' that has been used successfully in other industries, and will address the introduction of new processes, technologies...
This course covers the growth, development and structure of normal bone and joints, the biomechanics of bone connective tissues, and their response to stress, calcium and phosphate homeostasis. Additional topics include regulation by parathyroid hormone and vitamin D, the pathogenesis of metabolic bone...
This course provides a comprehensive overview of human pathology with emphasis on mechanisms of disease and diagnostic medicine. Topics include:Cellular Mechanisms of DiseaseMolecular PathologyPathology of Major Organ SystemsReview of Diagnostic Tools from Traditional Surgical Pathology to Diagnostic...
This course is designed to give the student a clear understanding of the pathophysiology of the menstrual cycle, fertilization, implantation, ovum growth development, differentiation and associated abnormalities. Disorders of fetal development including the principles of teratology and the mechanism...