Courses found: 1278

NVIDIA
RSS feed
Course
Description
Dates
1
54f10d8d-e1cd-44a9-9fe3-af78afe8a9ed-e646d043ea61.small
54f10d8d-e1cd-44a9-9fe3-af78afe8a9ed-e646d043ea61.small
Philippe Rigollet, Jan-Christian Hütter, Karene Chu
MITx
Mathematics, Statistics and Data Analysis
Gb Paid Free
Course added: 13 June 2018
Develop a deep understanding of the principles that underpin statistical inference: estimation, hypothesis testing and prediction. -- Part of the MITx MicroMasters program in Statistics and Data Science. Statistics is the science of turning data into insights and ultimately decisions. Behind recent advances...
10 May 2021
2
01331026-64f6-4533-a1b2-47621720513a-728e9c9f70a6.small
01331026-64f6-4533-a1b2-47621720513a-728e9c9f70a6.small
Chantal Labbé, Marc Fredette
HECMontrealX
Computer Science Mathematics, Statistics and Data Analysis
Fr Paid Free
Course added: 13 August 2020
Devenez un scientifique des données UX! De l'analyse de données qualitatives à l'analyse du « Big Data », vous serez en mesure de dégager des « insights » des données afin de formuler des recommandations sur des bases empiriques. Le « Big Data » et l'UX vous interpellent? Ce MOOC vous donnera les méthodes...
14 June 2021
3
Df0769a9-8b89-44ae-b223-4e9de3905b38-b5f92c09ad8d.small
Df0769a9-8b89-44ae-b223-4e9de3905b38-b5f92c09ad8d.small
Chantal Labbé, Marc Fredette
HECMontrealX
Computer Science Mathematics, Statistics and Data Analysis
Gb Paid Free
Course added: 13 August 2020
Become a UX data scientist! From qualitative data analysis to big data Web analytics, you will be able to leverage insights from data to make empirically-based recommendations. Do big data and UX speak to you? This MOOC will give you the methods and tools to analyze the whole spectrum of data we handle...
14 June 2021
4
1bf266b1-0a55-43e5-ae9f-f0c9a51aa515-cd41794112bc.small
1bf266b1-0a55-43e5-ae9f-f0c9a51aa515-cd41794112bc.small
Learn the mathematical foundations essential for financial engineering and quantitative finance: linear algebra, optimization, probability, stochastic processes, statistics, and applied computational techniques in R. Modern finance is the science of decision making in an uncertain world, and its language...
7 July 2021
5
6e8a49e3-e74b-4a74-81b7-ebaf9c82c620-e20771d7a2a2.small
6e8a49e3-e74b-4a74-81b7-ebaf9c82c620-e20771d7a2a2.small
Financial derivatives are ubiquitous in global capital markets. Students will obtain a sophisticated understanding of valuation methods; tools for quantifying, hedging, and speculating on risk; and a basic familiarity with major markets and instruments. Financial derivatives are ubiquitous in global...
29 September 2021
6
B-teaser-0
B-teaser-0
Константин Вячеславович Воронцов
Яндекс
Computer Science Mathematics, Statistics and Data Analysis
Ru Free
Course added: long ago
In selections:
Small-icon.hover
Лектор: Константин Вячеславович Воронцов, старший научный сотрудник Вычислительного центра РАН. Заместитель директора по науке ЗАО "Форексис". Заместитель заведующего кафедрой «Интеллектуальные системы» ФУПМ МФТИ. Доцент кафедры "Математические методы прогнозирования" ВМиК МГУ. Эксперт компании "Янд...
Details to be announced
Favored by 9 people
7
B-teaser-0
B-teaser-0
Обязательный курс первого семестра для отделения Computer Science. Преподаватель - д.ф.-м.н. А.М.Райгородский. Основы перечислительной комбинаторики Обобщенная функция Мёбиуса и асимптотики Деревья и унициклические графы Разбиение чисел на слагаемые Производящие функции и линейные ...
Details to be announced
Favored by 12 people
8
Yury_lifshits
Yury_lifshits
Лекции: - Построение суффиксного дерева (по Укконену) - Преобразование Берроуза-Вилера - Архитектура поисковых систем. Pagerank - Структура сложных сетей - Введение в байесовские сети - Автоматическая классификация текстов - Метод опорных векторов (Support vector machines) - Семантический Ве...
Details to be announced
Favored by 9 people
9
Cscenter
Cscenter
Ицыксон Дмитрий Михайлович, Опарин Всеволод Владиславович
Computer Science Center
Computer Science Mathematics, Statistics and Data Analysis
Ru Free
Course added: long ago
In selections:
Large-icon
Курс знакомит со сложностью вероятностных вычислений и теоретическими основами криптографии. Мы изучим вероятностные классы сложности и основные приемы, которые используются для анализа и построения вероятностных алгоритмов, узнаем, что такое интерактивные протоколы, игры Артура и Мерлина, докажем з...
Free schedule
Favored by 8 people
10
Cscenter
Cscenter
Буре Владимир Мансурович, Грауэр Лидия Вальтеровна
Computer Science Center
Mathematics, Statistics and Data Analysis
Ru Free
Course added: long ago
In selections:
Small-icon.hover
Лекция 0 «Обзор основных фактов теории вероятностей» Лекция 1 Выборка, эмпирическая вероятностная мера, теорема Гливенко-Кантелли. Описательная статистика. Лекция 2 Статистики 1-го типа, точечные оценки, свойства точечных оценок, методы построения точечных оценок, неравенство Рао-Крамера. ...
Free schedule
Favored by 9 people
11
Ddjlogo
Ddjlogo
This free 5-module online introductory course gives you the essential concepts, techniques and skills to effectively work with data and produce compelling data stories under tight deadlines. Comprising of video lectures, tutorials, assignments, readings and discussion forums, this course is open to...
19 May 2014
12
Ampcamp4-logo
Ampcamp4-logo
The exercises we cover today will have you working directly with the Spark specific components of the AMPLab’s open-source software stack, called the Berkeley Data Analytics Stack (BDAS).
Free schedule
Favored by 1 person
13
Uoft_logo
Uoft_logo
Geoffrey Hinton
University of Toronto
Computer Science Mathematics, Statistics and Data Analysis
Gb Free
Course added: 26 September 2013
In selections:
Small-icon.hover Small-icon.hover
Introductory course in machine learning by world leading expert Geoffrey Hinton. Topics include: linear regression and classification, neural networks, clustering, decision trees, gaussian processes, deep belief nets and more
Free schedule
Favored by 1 person
14
Uoft_logo
Uoft_logo
Tijmen Tieleman, Geoffrey Hinton
University of Toronto
Computer Science Mathematics, Statistics and Data Analysis
Gb Free
Course added: 26 September 2013
In selections:
Small-icon.hover Small-icon.hover
In this course, we study neural networks of various types. Topics include: neural network architectures, perceptrons, the backpropagation algorithm, neuro-probabilistic language models, convolutional nets for digit recognition, mini-batch gradient descent, the momentum method, recursive neural networks...
Free schedule
Favored by 3 people
15
Uoft_logo
Uoft_logo
Geoffrey Hinton
University of Toronto
Computer Science Mathematics, Statistics and Data Analysis
Gb Free
Course added: 26 September 2013
In selections:
Small-icon.hover Small-icon.hover
Advanced course in machine learning by world leading expert Geoffrey Hinton. Topics include: graphical models, Restricted Boltzmann machines, Object Recognition in Deep Neural Nets, Recurrent neural networks, Non-linear Dimensionality Reduction and more.
Free schedule
Favored by 4 people
16
Logo
Logo
David MacKay
University of Cambridge
Computer Science Mathematics, Statistics and Data Analysis
Gb Free
Course added: 26 September 2013
In selections:
Small-icon.hover Chapter1_final 69884528421220
A series of sixteen lectures covering the core of the book "Information Theory, Inference, and Learning Algorithms (Cambridge University Press, 2003)" which can be bought at Amazon, and is available free online. A subset of these lectures used to constitute a Part III Physics course at the University...
Free schedule
Favored by 2 people
17
Logo2
Logo2
Prof. Albert-László Barabási
Center for Complex Network Research Northeastern University Physics Department
Biology & Life Sciences Computer Science Social Sciences Mathematics, Statistics and Data Analysis
Gb Free
Course added: 22 September 2013
In selections:
Slide1 Coursera_image_maayan Introcomplexitylogo Extpicture
The course is an interdisciplinary course, focused on the emerging science of complex networks and their applications. The material includes the mathematics of networks, their applications to biology, sociology, technology and other fields, and their use in the research of real complex systems in nature...
9 September 2014, 15 weeks
Favored by 4 people
18
0bc79586-dd66-49d1-a17b-3e07ac0b724f-baf439a96f61.small
0bc79586-dd66-49d1-a17b-3e07ac0b724f-baf439a96f61.small
What is credit risk? Why is it so important, in modern economies, to correctly deal with it? This course combines theory with practice to answer these questions. Imagine that you are a bank and a main part of your daily business is to lend money. Unfortunately, lending money is a risky business - there...
1 May 2020
19
5a33cb0a-18a3-4732-85c6-6c72cc71dd32.small
5a33cb0a-18a3-4732-85c6-6c72cc71dd32.small
An introduction to probability, with the aim of developing probabilistic intuition as well as techniques needed to analyze simple random samples. Statistics 2 at Berkeley is an introductory class taken by about 1000 students each year. Stat2.2x is the second of three five-week courses that make up Stat2x...
14 April 2014, 5 weeks
20
97f16f83-5e8a-496c-9086-5634c8edccbb-95970686ef9b.small
97f16f83-5e8a-496c-9086-5634c8edccbb-95970686ef9b.small
Benedict Gross, Joseph Harris, Emily Riehl
HarvardX
Mathematics, Statistics and Data Analysis
Gb Paid Free
Course added: 13 February 2018
Increase your quantitative reasoning skills through a deeper understanding of probability and statistics. Created specifically for those who are new to the study of probability, or for those who are seeking an approachable review of core concepts prior to enrolling in a college-level statistics course...
4 February 2020



Know a course absent here? Share with us


© 2013-2019